

Abstract

There is a great demand for more powerful handhelds devices: they are asked
to be cheap, have long battery life and still be performant. The Zippy project
aims are to fulfill these goals by designing a new dynamically reconfigurable
processor architecture.

In this term project, the multimedia oriented MediaBench benchmark
suite was ported to the SimpleScalar processor simulator tool set. Apart
from the PGP application, the port does not need big modifications in the
MediaBench programs nor in SimpleScalar. Nine of the eleven Mediabench
programs were analized with the SimpleScalar simulators and with post-
processing scripts. They were simulated on two different architectures: a
StrongARM-like and the default SimpleScalar processor architecture, which
is a general purpose processor model.

The results are that the programs rely heavily on integer operations, that
the branch prediction hit rates are not really high due to data dependent
branches, the data cache hit rates greatly vary in function of the program.
An estimation of the applications memory footprint was calculated. The run-
time intensive function were outlined in all the applications. The different
behaviour depending on the processor architecture chosen was also analyzed.

1

Contents

Introduction 3

1 The tools used 5
1.1 SimpleScalar . 5

1.1.1 The simulators . 5
1.1.2 The other tools provided with SimpleScalar 6

1.2 MediaBench . 6

2 Simulation methodology 8
2.1 Compilation of MediaBench 8
2.2 Changes to SimpleScalar . 9
2.3 The processor architectures used 9
2.4 Automation and post-processing scripts 10

2.4.1 Automation scripts . 10
2.4.2 Post-processing scripts 11

3 Results 16
3.1 Instruction class mix . 16
3.2 Branch prediction hit rate . 16
3.3 Instruction cache hit rate . 16
3.4 Data cache hit rate . 18
3.5 Memory footprint . 18
3.6 Function breakdown . 20

Conclusion 28

Bibliography 29

A Processor configuration file for SimpleScalar 30

2

B Automation scripts 34
B.1 benchmark.sh . 34
B.2 An example for a specific benchmark: adpcm benchmark.sh . . 35

C Postprocessing scripts 36
C.1 cycle by function.pl . 36
C.2 insn by function.pl . 38

D Extract form loader.c 40

3

List of Figures

3.1 Instruction class mix 17
3.2 Branch prediction hit rate 17
3.3 Instruction cache hit rate 18
3.4 Data cache hit rate . 19
3.5 Program text (code) size (in bytes) 20
3.6 Program data size (in bytes) 21
3.7 Total memory pages allocated (in bytes) 21
3.8 Function breakdown (in cycles) for the StrongARM ar-

chitecture . 23
3.9 Function breakdown (in cycles) for the default architecture 24
3.10 Function breakdown (in instructions) 25

List of Tables

2.1 Command line parameters for the MediaBench programs 12
2.2 Extract from a pipeline trace 14

3.1 Instruction per cycle for the programs 26
3.2 Instruction per cycle for the most important functions . 27

4

Introduction

Over the last years, personal computing devices have been more and more
common: from PDAs to more and more sophisticated mobile phones. But
their current capabilities are still limited (in terms of computing performance
and power consumption). The development of new wireless communication
technology, like UMTS, which will allow much bigger bandwidth will urge
the development of more powerful handheld and wearable devices.

Future generation of such devices will greatly extend current capabilities
by combining mobile network access with full audio/video communication,
organizing and planning tools, and e-commerce applications.

The most important requirements for embedded processors in these do-
mains are:

• a sufficient performance to run real-time tasks such as audio and video
decoding,

• a low power consumption to increase battery life time, and

• low cost, as handhelds and wearables are consumer devices.

Embedded processors for handhelds are typical client processors, where the
goal is not to maximize performance but power- and area efficiency.

The aims of the ZIPPY project at ETH (http://www.zippy.ethz.ch/)
are to define a new benchmark for embedded application domains of hand-
helds and wearables and to design a dynamically reconfigurable embedded
processor architecture that achieves a performance at least one order of mag-
nitude higher than processor architectures using a comparable amount of
silicon area and energy.

This term project concentrated on the first goal: the MediaBench bench-
mark was analysed with the SimpleScalar processor simulator. The different
parts of this term project were:

- The compilation of the programs on Solaris

5

- The port and compilation of the programs on the SimpleScalar archi-
tecture

- Modifications of the simulators to profile the program functions by
instruction count and cycle count

- Profiling of the programs to obtain informations such as instruction
class mix, cache hit rates, etc., and outlining runtime intensive functions

6

1 The tools used

1.1 SimpleScalar

SimpleScalar [1] [2] [3] is a tool set to simulate processors. It consists of com-
piler, assembler, linker, simulation and visualization tools for the SimpleScalar
architecture, which uses a close derivative of the MIPS Instruction Set [4].
It is freely available with source code and documentation from
http://www.simplescalar.org/. It has been developed by Todd Austin
and is now supported by Doug Burger. It was first released in July 1996 and
the second release happened in January 1997. It is portable (it runs on most
Unix-like machines), the simulator can support multiple Instruction Sets and
can be extended.

1.1.1 The simulators

There are six simulators which differ in their speed and the details of the
results.

sim-fast and sim-safe are the two fastest simulators and the two sim-
plest. They only do functional simulation, sim-fast does not check align-
ment and access permission for each memory reference whereas sim-safe
does. They allow to test the functionality of the executable that has been
compiled.

Two simulators allow functional cache simulation with fully configurable
caches (instruction and data, first and second level, associativity, . . .):
sim-cache and sim-cheetah. These simulators are ideal for fast simula-
tion of caches if the effect of cache performance on execution time is not
needed.

sim-profile is a functional simulator which is able to produce varied
profile information. It can generate detailed profiles on instruction classes
and addresses, text symbols, memory accesses, branches and data segment
symbols.

The most complicated and detailed simulator is sim-outorder, and as a

7

consequence also the slowest. This simulator supports out-of-order issue and
execution. sim-outorder can, for example, trace the pipeline cycle by cycle.
The simulated processor can be significantly configured: number of ALUs
(integer and floating point), RUU (Register Update Unit) capacity, cache
and memory latency, memory bus width, branch predictor model (taken, not
taken, perfect, bimodal, 2-level adaptive), . . .

The speed difference between the simulators is quite important: for ex-
ample for the same program on the same unloaded machine sim-safe sim-
ulates 2.73 millions instructions per second, sim-profile 682 thousands and
sim-outorder 66590 (sim-outorder runs 40 times slower than sim-safe in this
case).

1.1.2 The other tools provided with SimpleScalar

SimpleScalar comes with all the tools needed to build programs. There is
a port for different compilers: gcc for C programs, f2c for FORTRAN pro-
grams and as the GNU assembler. ar and ranlib ports are also provided to
build libraries. The version 1.09 of the GNU C libraries and version 2.5.2
of the GNU binary utilities are also provided. SimpleScalar also comes with
textprof.pl, a text segment profile viewer written in Perl.

1.2 MediaBench

MediaBench [5] is a benchmark suite composed of multimedia programs. Its
aim is to benchmark architectures for a multimedia utilization, as
opposed to SPEC benchmarks [6] for example. It is available from:
http://www.cs.ucla.edu/∼leec/mediabench/. MediaBench is composed
of complete applications coded in high-level languages. All of the applica-
tions are publicly available, making the suite available to a wider user com-
munity. MediaBench 1.0 contains 19 applications culled from available image
processing, communications and DSP applications. The components include:

• JPEG: JPEG is a standardized compression method for full-color and
gray-scale images. JPEG is lossy. Two applications are derived from
the source code: cjepg does image compression and djpeg, which does
decompression.

• MPEG: MPEG2 is the current dominant standard for high-quality dig-
ital video transmission and is also used for DVDs. The important com-
puting kernel is a motion estimation for coding and the inverse discrete

8

cosine transform for decoding. The two applications used are mpeg2enc
for encoding and mpeg2dec for decoding.

• GSM: European GSM 06.10 provisional standard for fullrate speech
trancoding, prI-ETS 300 036, which uses residual pulse excitation/long
term prediction coding at 13 kbit/s. GSM 06.10 compresses frames of
160 13-bit samples (8 kHz sampling rate, i.e. a frame rate of 50 Hz)
into 260 bits.

• G.721: Reference implementations of the CCITT (International Tele-
graph and Telephone Consultative Committee) G.711, G.721 and G.723
voice compressions.

• PGP: PGP stands for ”Pretty Good Privacy”, and permits encrypting
and signing data. The signature is computed using a 128-bit crypto-
graphically strong one-way hash function of the message (MD5). To
encrypt data PGP uses a block-cipher IDEA, RSA for key manage-
ment and digital signatures.

• PEGWIT: A program for public key encryption and authentication. It
uses an elliptic curve over GF(2255), SHA1 for hashing, and the sym-
metric block cipher square.

• Ghostscript: An interpreter for the PostScript language. The single
application for Ghostscript is gs, which does file I/O but no graphical
display.

• Mesa: Mesa is a 3-D graphics library clone of OpenGL.

• RASTA: A program for speech recognition that supports the follow-
ing techniques: PLP, Rasta and Jah-RASTA. The technique handles
additive noise and spectral distortion simultaneously, by filtering the
temporal trajectories of a non-linearly transformed critical band spec-
trum.

• EPIC: An experimental image compression utility. The compression al-
gorithms are based on a bi-orthogonal critically sampled dyadic wavelet
decomposition and a combined run-length/Huffman entropy coder. The
filters have been designed to allow extremely fast decoding without
floating-point hardware.

• ADPCM: Adaptive differential pulse code modulation is one of the
simplest and oldest forms of audio coding.

9

2 Simulation methodology

Because the project concentrates on handheld devices, the graphic applica-
tions Ghostscript and Mesa were not included in the programs being ana-
lyzed. For the Zippy project, it was decided that high-performance graphic
applications will not be a target for future handhelds. In order to analyze
the other programs they were compiled under SimpleScalar and Sun. The
output files of the SimpleScalar and Sun binaries were compared to check if
the SimpleScalar binaries are functionaly correct.

2.1 Compilation of MediaBench

The compilation of the Sun binaries went without any problem, the pro-
vided Makefiles needed only to be adpated to change include paths. The
compilation for SimpleScalar was much less smooth. The Makefiles of all the
programs were modified to use ssbig-na-sstrix-gcc as compiler and linker, and
the ar port provided with SimpleScalar for the programs for which libraries
have to be built.

For MPEG2 the SimpleScalar binaries were not compiled with the X11
library.

For Rasta the SPHERE libraries had to be recompiled for SimpleScalar
(mediabench comes with precompiled version of the libraries for SUN). The
source code of the SPHERE libraries can be found here:
ftp://jaguar.ncsl.nist.gov/pub/sphere 2.6a.tgz .

For PGP, the line 60 of the Makefile must be decommented:
BYTEORDER= -DHIGHFIRST and $(BYTEORDER) added in the CFLAGS vari-
able of the mips-ultrix build (line 409). The corresponding CFLAGS is there-
fore:

CFLAGS="$(RSAiNCDIR) $(DBG) -DUNIX -DPORTABLE $(BYTEORDER) \
-DMPORTABLE -DUSE_SELECT -DIDEA32"

The binary is then compiled with make mips-ultrix.

10

2.2 Changes to SimpleScalar

SimpleScalar needs a small change to run PGP, for the other programs it
doesn’t need any change. PGP uses some system calls which are not imple-
mented in SimpleScalar. SimpleScalar’s normal behaviour in this case is to
issue an error message (invalid/unimplemented system call encountered, code
%d) and stop the execution of the program. The system calls are handled in
the syscall.c file. By commenting out the line 2010 of syscall.c (for the
PISA architecture), unimplemented system calls don’t cause the end of the
execution of the program anymore and the PGP functionality benchmarked1

still works.

2.3 The processor architectures used

The programs were simulated for two different processor architectures. The
first one is an StrongARM-like processor [7]. It has following features:

• 1 integer ALU

• 1 integer multiplier/divider

• 1 floating point ALU

• 1 floating point multiplier/divider

• a 32-way set-associative 16 Kbyte instruction cache2

• a 32-way set-associative 16 KByte data cache

• a memory latency of 8 cycles for the first chunk and 2 for the rest of a burst
access

• a 4 bytes wide memory access bus

• a bimodal branch predictor

(see Appendix A for the configuration file with all the options).
The second one is the default processor from SimpleScalar:

1Encrypting and decrypting a text file. Importing keys in a key ring doesn’t work for
example

2The cache size is 16 KByte but SimpleScalar instructions are 64 bit long, the 32
first for the instruction and the 32 last bits for flags and information for the simulator.
Therefore only 8 KBytes are left for the ”real“ instructions. This means our StrongARM-
like processor model has an actual instruction cache of 8 Kb, which is half the size of
current StrongARM SA-1110 processor [7]

11

• 4 integer ALU

• 1 integer multiplier/divider

• 4 floating point ALU

• 1 floating point multiplier/divider

• a direct-mapped 16 Kbyte L1 instruction cache

• a 4-way set-associative 16 KByte L1 data cache

• a 4-way set-associative 256 KByte L2 unified cache

• a memory latency of 18 cycles for the first chunk and 2 for the rest of a burst
access

• a 8 bytes wide memory access bus

• a bimodal branch predictor

Further informations about the default processor can be found by running
sim-outorder without any options.

2.4 Automation and post-processing scripts

Several scripts were written to help run the benchmarks and do some post-
processing. The automation scripts do not test for misssing files and won’t
tell if a benchmark didn’t work.

2.4.1 Automation scripts

The command lines for the simulators are quite difficult to understand and
are quite long. Shell scripts were written to run the simulations in a simpler
way. There is a central script: benchmark.sh (see Appendix B.1) which is used
to launch all the benchmarks (either all at once or only one). The syntax of
the command line is:

./benchmark.sh all to run all the benchmarks or

./benchmark.sh adpcm to run the adpcm benchmark for exam-
ple.

In this script all the common arguments are set:

• path to the benchmark programs (variable BENCH HOME),

• path to the post-processing scripts (see 2.4.2) (CYCLE SCRIPT and INSN SCRIPT),

12

• processor architecture used and other common simulator options (PROC PARAM),

• file extension for the simulator outputs (EXTENSION).

This script then runs the script corresponding to the benchmark wanted (the
variables are exported to the scripts).

The scripts for each benchmark program contains the command line to
run the simulator with the options of MediaBench, and the command lines
for the post-processing scripts.

The command line used for each programs is given in table 2.1. The
command line options for the simulators are:

sim-profile -iclass -redir:sim <simulation output file> \
<program command line>

and

sim-outorder $PROC_PARAM -pcstat sim_cycle -pcstat \
sim_num_insn -redir:sim <simulation output file> <program command line>

2.4.2 Post-processing scripts

Some of the information usefull for the project about the benchmark pro-
grams could not be given by SimpleScalar, like for example the number of
instructions and cycles that each function took. sim-profile is capable to give
the number of instructions for a function if it is not defined statically (if a
function is defined statically the number of instructions the funtion uses is
added to the calling function). Unfortunately, several programs in the bench-
mark have statically defined functions (cjpeg, djpeg, mpeg2enc and mpeg2dec)
which do represent a big proportion of the total calculation, like for example
the dist1 function in mpeg2enc. The perl scripts cycle by function.pl (see Ap-
pendix C.1) and insn by function.pl (see Appendix C.2) respectively give, a
list of functions ordered by number of cycles used and number of instructions
used. They both work the same way, they are just analyzing a different part
of the SimpleScalar output. sim-outorder can give informations for each code
address. sim-outorder is told which information is wanted with the com-
mand line option -pcstat <statistic name>. The statistic analyzed by
cycle by function.pl is sim cycle and sim num insn for insn by function.pl.
The format of the output file (for the part which is of interest) is as follows:

<statistic name> by pc
<statistic name> by pc.count = xxxx

<statistic name> by pc.total = xxxx

<statistic name> by pc.imin = xxx

13

Benchmark name Binary Options Input file
Adpcm decode rawdaudio < clinton.adpcm
Adpcm encode rawcaudio < clinton.pcm
Epic epic epic -o <output file name> < test image.pgm
Epic unepic unepic -o <output file name> < test.image.pgm.E
g721 decode decode -4 -l -f clinton.g721
g721 encode encode -4 -l -f clinton.pcm
gsm decode untoast -fpl clinton.pcm.run.gsm
gsm encode toast -fpl clinton.pcm
jpeg decode djpeg -dct int -ppm testimg.jpg

-outfile <output file name>
jpeg encode cjpeg -dct int -progressive -opt testimg.ppm

-outfile <output file name>
MPEG2 decode mpeg2dec -r -f -b mei16v2.m2v

-oO tmp%d
MPEG2 encodea mpeg2enc options.par <output file name>
Pegwit decode pegwit -d pegwint.enc <output file name> < my.sec
Pegwit encode pegwit -e my.pub pgptest.plain < encryption junk

<output file name>
PGP decodeb pgp -fdb -zbillms < pgptext.pgp
PGP encodeb pgp -fes Bill -zbillms -u Bill < pgptest.plain
Rasta rasta -z -A -J -S 8000 -n 12 < ex5 c1.wav

-f map weights.dat

aThe options.par file contains the options for encoding the MPEG2 stream
and absolute paths that needs to be adjusted to make it work.

bThe test key has first to be included into keyrings (this must not be done with
the pgp built for SimpleScalar):

1. Create a sub-directory named .pgp in a home directory.

2. pgp -ka billms prv.pgp $(HOME)/.pgp/secring.pgp

3. pgp -ka billms pub.pgp $(HOME)/.pgp/pubring.pgp

Table 2.1: Command line parameters for the MediaBench programs

14

<statistic name> by pc.imax = xxxxxxxx

<statistic name> by pc.average = xxxxxxxxx

<statistic name> by pc.std dev = xxxxxxxxx

<statistic name> by pc.overflows = x

pdf == prob dist fn, cdf == cumulative dist fn
index count pdf
<statistic name> by pc.start dist
0xAAAAAACCCCCCCC xxxxxxxxxxxxxxxxxxx x.xx

...
0xAAAAAACCCCCCCC xxxxxxxxxxxxxxxxxxx x.xx

<statistic name> by pc.end dist

AAAAAA is the text address and CCCCCCCC is the value of the counter
in hexadecimal for this text address3.

The script starts by parsing the output file until it gets to the beginning
of statistic. Then for each line it calls the function add cycles to funtion with
the text address and the value of the counter as parameters until it reaches
the end of the statistic. The function add cycles to funtion parses the disas-
sembly file to look to which function this text address belongs. The format
of the disassembly file4 is as follows: each text address is on a single line:
the text address (preceded by 00), then there is the function name with the
offset in brackets (<function+offset>) and then the assembler instruction.
The function extracts the name of the function by taking the string wich is
between the first < and the first > or + whichever comes first. So you have
for example:

004003e0 <adpcm coder+60> addiu $t9[25],$t9[25],4592

The value of the counter is then added to the value for this function which
is stored in a hash. Then the hash is ordered and printed on the screen.

The value of the counter for the sim cycle statistic is a little bit spe-
cial. The problem is to count how many cycles an instruction takes to be
executed when you have a pipeline and so you can’t add the differences
cycle(commit)-cycle(fetch) for each instruction each time the instruction is
executed. Counting this way would give numbers without any interesting
meaning. SimpleScalar solves this problem by counting the number of cycles
between this instruction fetch and the previous instruction fetch for each in-
struction: if the instruction A is fectched at cycle 1000 and instruction B is
fetched at cycle 1002, the counter of B is incremented by 2.

3The counter is always written with 8 digits whereas some text addresses are shorter
than 6 digits.

4The disassembly file is obtained with objdump:
objdump -dl <executable file> > <disassembly file>

15

@ 2560

ae = ‘0x004002e0: [internal ld/st]’

af = ‘0x004002e8: jal 0x4001f0’

[IF] [DA] [EX] [WB] [CT]

af ad

ae

@ 2561

[IF] [DA] [EX] [WB] [CT]

ae ad+

af/

@ 2562

[IF] [DA] [EX] [WB] [CT]

af/ ad

ae

@ 2563

[IF] [DA] [EX] [WB] [CT]

af ad

ae

@ 2564

[IF] [DA] [EX] [WB] [CT]

af

@ 2565

[IF] [DA] [EX] [WB] [CT]

af

@ 2566

@ 2567

@ 2568

@ 2569

@ 2570

ag = ‘0x004001f0: lw r2,0(r4)’

[IF] [DA] [EX] [WB] [CT]

ag*

@ 2571

ah = ‘0x004001f0: [internal ld/st]’

ai = ‘0x004001f8: lw r5,8(r4)’

[IF] [DA] [EX] [WB] [CT]

ai ag

ah

@ 2572

aj = ‘0x004001f8: [internal ld/st]’

[IF] [DA] [EX] [WB] [CT]

ah ag+

ai

aj

Table 2.2: Extract from a pipeline trace

16

For example in the pipeline trace from Table 2.2 5, the state of the pipeline
is given for each cycle (the cycle counter is the number after the @ sign).
sim-outorder would add 10 cycles to the instruction 0x004001f0 and one to
0x004001f8.

With this method, if you add the counters of all instructions you obtain
the execution time in cycles of the whole program. But the counters don’t
give a pertinent information for a particular instruction, because the number
of cycles that will be counted for this instruction depend on the instructions
before (the number of cycles of cache misses happening just before this in-
struction will be added to this instruction). This problem induces an error in
the number of cycles calculated by the script, but the error is marginal since
only the errors of the first and the last instruction of the function are counted
(a function will “loose” cycles if it finishes with an instruction taking a lot
of cycles to be executed, and “gain” cycles if it is calling such a function).

5@ is the cycle counter, [IF] the instruction fetch stage, [DA] the decode, [EX] execution,
[WB] writeback and [CT] the commit

17

3 Results

3.1 Instruction class mix

Figure 3.1 shows the instruction class mix for each program (the mean is an
arithmetic mean calculated with the number of instructions of each type for
each program, the SPEC mean data have been taken from [8]). Integer op-
erations are by far the most important operations: they account for at least
50% and up to 70% of all the instructions executed. Floating point opera-
tions are only present in 5 programs (epic, unepic, mpeg2dec, mpeg2enc and
rasta) and in small proportions (less than 20%). The MediaBench programs
perform, in proportion, much less store operations than SPEC programs.

3.2 Branch prediction hit rate

In the Figure 3.2 the branch prediction hit rate is shown (the mean is a ge-
ometric mean). Branch prediction hit rate for the MediaBench programs is
not very high, with a mean of 90% and a minimum of 76,9% for mepg2enc.
This can be explained by a big proportion of data dependent branches. The
only difference for the branch predictor between the default architecture and
the StrongARM-like one is that the default has a bimodal predictor table
which is 4 times bigger. This bigger table brings only a very small improve-
ment (∼ +0,15%).

3.3 Instruction cache hit rate

The Figure 3.3 shows the instruction cache hit rate (only the hit rate for
the L1 instruction cache for the default processor). Both instruction caches
are ”8“ KByte (see 2.3) and we can see that the direct-mapped cache of the
default processor has, as expected, lower hit rates than the set-associative
one from the StrongARM-like processor.

18

Figure 3.1: Instruction class mix

Figure 3.2: Branch prediction hit rate

19

Figure 3.3: Instruction cache hit rate

3.4 Data cache hit rate

The Figure 3.4 shows the data cahce hit rate of the L1 cache. There aren’t
big differences between the two architectures. The hit rates are low for Peg-
wit (smaller than 90%) and unepic (∼95%), but quite high for the other
programs.

3.5 Memory footprint

The program code size is shown in Figure 3.5. The Figure 3.6 gives the data
part of the static memory consumption (the value displayed is the value
of ld data size given by the simulator). This value can also be obtained
through nm1 by adding the size of the symbols. The rasta program has a
huge static structure (mapping param) which is aproximately 8 MByte big..
The Figure 3.7 gives the size of the memory pages allocated.

The values returned by SimpleScalar must be taken with great care: Sim-
pleScalar does not decrement its counter of memory pages allocated when a
page is freed and no pages are allocated for the bss and sbss sections at the

1nm is part of the GNU binary utilities and lists symbols from an object file

20

Figure 3.4: Data cache hit rate

start2 (see Appendix D on the lines 549 to 553: no mem bcopy is being made
and therefore the memory pages counter is not incremented, as opposed to
sdata on line 542 for example). When the data from the bss or sbss sections
are used the number of pages allocated is increased. Therefore it is not really
easy to have the memory footprint of the applications:

1. SimpleScalar’s output gives static and dynamic information. The size
of program text (code), the size of the .data and .bss sections for the
static part, and the total size of pages allocated for the dynamic part.

2. The total size of pages allocated is greater than what it should be
because the counter of pages allocated is not decremented when pages
are freed

3. Referenced data from the .bss section is counted in the total size of
pages allocated

2The bss section is used for local common variable storage. You may be allocat address
space in the bss section, but you may not dictate data to load into it before your program
executes. When a program starts running, all the contents of the bss section are zeroed
bytes.

21

Figure 3.5: Program text (code) size (in bytes)

For handheld devices as for embedded systems, it is important to know before
running a program if there is enough free memory to run it. It is therefore
important to have a memory footprint representing the case where all the
data from the .bss section is referenced. But adding the size of the pages allo-
cated and the program data size gives a wrong result because the referenced
data from the .bss section is counted twice. Therefore the sum of the total
size of pages allocated and the program data size gives an overestimation of
the memory footprint.

3.6 Function breakdown

Figure 3.8 and 3.9 show the breakdown of the different functions in terms
of cycles and Figure 3.10 the breakdown of the functions in terms of in-
structions. The functions are ordered, on the left the functions which use
the most cycles and the black part on the right is the sum of all the re-
maining functions. Function names are given under the bar. These graphics
are based on the output of the cycle by funtion.pl post-processing script. By
comparing the weight of a function on the 2 figures, it can be seen whether
a function benefits from having more ALUs and more cache. For example,
the collapse pyr function from unepic takes 33% of the program execution

22

Figure 3.6: Program data sizea (in bytes)

asize of the .data and .bss sections

Figure 3.7: Total memory pages allocated (in bytes)

23

time with the StrongARM processor and less than 25% with the other pro-
cessor. For the Rasta program, the most important function is printf fp. In
a handheld device the output of such a program would not be written on the
standard output or in a file but rather sent to another program. Therefore,
the source code should be modified to remove the calls to printf to have a
better look of the “useful” functions.

In the tables 3.1 and 3.2 the Instructions per cycle (IPC) are given for each
program and for the most important function of each program. The speed
increase factor is the ratio between the IPC for the default architecture and
the StrongARM-like one. Looking at the speed factor, we can see that some
programs really benefit from the additional ALUs3 like PGP and Pegwit,
whereas for ADPCM the benefit is much smaller. To better understand the
speed increase the data flow diagrams should be analyzed. For PGP, the IPC
increase factor is greater than four when decoding and this is also the case
for the mp smul function for encoding and decoding. This is greater than
the increase in integer ALUs and is the consequence of the presence of an L2
cache with a latency of 6 cycles for the default architecture. This latency is
smaller than the latency of 8 cycles of the StrongARM-like architecture and
therefore the default architecture needs to wait two cycles less when there is
a L1 cache miss and the data is present in L2.

3four integer and FP ALUs instead of one for the StrongARM-like architecture

24

Figure 3.8: Function breakdown (in cycles) for the StrongARM architecture

25

Figure 3.9: Function breakdown (in cycles) for the default architecture

26

Figure 3.10: Function breakdown (in instructions)

27

IPC IPC IPC increase
(StrongARM) (default) factor

Adpcm decode 0.59 1.45 2.44
Adpcm encode 0.60 1.43 2.39
Epic epic 0.54 1.61 2.97
Epic unepic 0.48 1.38 2.85
g721 decode 0.60 1.76 2.91
g721 encode 0.61 1.94 3.20
gsm decode 0.59 1.79 3.04
gsm encode 0.54 2.00 3.68
jpeg decode 0.58 2.12 3.66
jpeg encode 0.57 1.97 3.45
mpeg2 decode 0.54 1.72 3.16
mpeg2 encode 0.55 1.42 2.59
Pegwit decode 0.43 1.63 3.76
Pegwit encode 0.43 1.60 3.71
Pgp decode 0.57 2.34 4.11
Pgp encode 0.56 2.24 3.97
Rasta 0.40 1.31 3.25

Table 3.1: Instruction per cycle for the programs

28

Function name IPC IPC IPC increase
(StrongARM) (default) factor

Adpcm decode adpcm decoder 0.59 1.45 2.44
Adpcm encode adpcm coder 0.60 1.43 2.39
Epic epic internal filter 0.55 1.68 3.05
Epic unepic collapse pyr 0.52 2.03 3.94
g721 decode quan 0.62 2.34 3.75
g721 encode quan 0.62 2.31 3.70
gsm decode Short term synthesis filtering 0.62 1.82 2.94
gsm encode Calculation of the LTP parameters 0.54 2.11 3.95
jpeg decode jpeg idct islow 0.60 2.20 3.64
jpeg encode encode mcu AC refine 0.57 2.00 3.49
mpeg2 decode idctcol 0.54 1.65 3.06
mpeg2 encode dist1 0.55 1.34 2.43
Pegwit decode gfAddMul 0.38 1.31 3.44
Pegwit encode gfAddMul 0.37 1.27 3.43
Pgp decode mp smul 0.57 2.38 4.20
Pgp encode mp smul 0.57 2.38 4.20
Rasta printf fp 0.23 0.86 3.71

Table 3.2: Instruction per cycle for the most important functions

29

Conclusion

The goals of this project have been achieved:

- the MediaBench benchmark suite was ported to SimpleScalar

- MediaBench was analyzed with several SimpleScalar simulators

- the programs were simulated with two different processors architec-
tures: a general purpose architecture and a StrongARM-like one

- the different outputs given by SimpleScalar have been analyzed to check
their accuracy

- the runtime intensive functions have been outlined for each program

The simulations showed the great importance of integer operations in
multimedia applications. This lets foresee a possibilty for SIMD parallelism.
The simulation with two different architectures showed the effects of different
number of ALUs, cache sizes and organisation. The different results of this
study confirm the results of [8], and gives a better understanding of the
SimpleScalar output regarding memory utilization. The programs have also
been analyzed more precisely, by looking at the function breakdown to find
out the runtime intensive functions of each program.

The source code of the runtime intensive functions should be analized to
find the algorithms used in multimedia programs, and their data flow dia-
grams to see how the performance can be enhanced by adapting the processor
architecture to the needs of the program.

30

Bibliography

[1] Todd M. Austin. A User’s and Hacker’s Guide to the SimpleScalar Ar-
chitectural Research Tool Set, 1997.

[2] Doug Burger and Todd M. Austin. SimpleScalar Tutorial

[3] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version
2.0. Technical report, University of Winsconsin-Madison, Computer Sci-
ence TR #1342, 1997.

[4] Charles Price. MIPS IV Instruction Set, revision 3.1. MIPS Technologies,
Inc., Mountain View, CA, 1995

[5] Chunho Lee, Miodrag Potkonjak, and William H. Magione-Smith.
MediaBench: A Tool for Evaluating and Synthesizing Multimedia and
Communications Systems. In Proceedings of the IEEE/ACM Int’l Sym-
posium on Microarchitecture, 1997.

[6] Standard Performance Evaluation Corporation.
http://www.spec.org/

[7] Intel r© StrongARM* Processors.
http://developer.intel.com/design/strong/quicklist/processor/

[8] Benjamin Bishop, Thomas P. Kelliher, and Mary Jane Irwin. A Detailed
Analysis of MediaBench. In Proceedings of the IEEE Workshop on Signal
Processing Systems, 1999.

31

Appendix A
Processor configuration file for
SimpleScalar

###

SimpleScalar Processor Configuration File

#

inspired by STRONGARM 1100 and others

#

M.Platzner

Sept 15, 2000

###

###

#

SIMULATOR

#

###

load configuration from a file

-config

dump configuration to a file

-dumpconfig

print help message

-h false

verbose operation

-v false

enable debug message

-d false

start in Dlite debugger

-i false

random number generator seed (0 for timer seed)

-seed 1

initialize and terminate immediately

-q false

restore EIO trace execution from <fname>

-chkpt <null>

32

redirect simulator output to file (non-interactive only)

-redir:sim <null>

redirect simulated program output to file

-redir:prog <null>

simulator scheduling priority

#-nice 19

maximum number of inst’s to execute

#-max:inst 1000000

number of insts skipped before timing starts

#-fastfwd 0

generate pipetrace, i.e., <fname|stdout|stderr> <range>

-ptrace <null>

profile stat(s) against text addr’s (mult uses ok)

-pcstat <null>

operate in backward-compatible bugs mode (for testing only)

-bugcompat false

###

#

PROCESSOR CORE

#

###

instruction fetch queue size (in insts)

-fetch:ifqsize 1

extra branch mis-prediction latency

-fetch:mplat 1

speed of front-end of machine relative to execution core

-fetch:speed 1

instruction decode B/W (insts/cycle)

-decode:width 1

instruction issue B/W (insts/cycle)

-issue:width 1

run pipeline with in-order issue

-issue:inorder true

issue instructions down wrong execution paths

-issue:wrongpath true

register update unit (RUU) size

-ruu:size 2

load/store queue (LSQ) size

-lsq:size 2

instruction commit B/W (insts/cycle)

-commit:width 1

33

total number of integer ALU’s available

-res:ialu 1

total number of integer multiplier/dividers available

-res:imult 1

total number of memory system ports available (to CPU)

-res:memport 1

total number of floating point ALU’s available

-res:fpalu 1

total number of floating point multiplier/dividers available

-res:fpmult 1

###

#

BRANCH PREDICTION

#

###

branch predictor type {nottaken|taken|perfect|bimod|2lev|comb}

-bpred bimod

bimodal predictor config (<table size>)

-bpred:bimod 512

2-level predictor config (<l1size> <l2size> <hist_size> <xor>)

-bpred:2lev 1 1024 8 0

combining predictor config (<meta_table_size>)

-bpred:comb 1024

return address stack size (0 for no return stack)

-bpred:ras 8

BTB config (<num_sets> <associativity>)

-bpred:btb 512 4

speculative predictors update in {ID|WB} (default non-spec)

-bpred:spec_update <null>

###

#

MEMORY HIERARCHY

#

###

l1 data cache config, i.e., {<config>|none}

-cache:dl1 dl1:16:32:32:f

l1 data cache hit latency (in cycles)

-cache:dl1lat 1

l2 data cache config, i.e., {<config>|none}

-cache:dl2 none

34

l2 data cache hit latency (in cycles)

-cache:dl2lat 8

l1 inst cache config, i.e., {<config>|dl1|dl2|none}

-cache:il1 il1:16:32:32:f

l1 instruction cache hit latency (in cycles)

-cache:il1lat 1

l2 instruction cache config, i.e., {<config>|dl2|none}

-cache:il2 none

l2 instruction cache hit latency (in cycles)

-cache:il2lat 8

flush caches on system calls

-cache:flush false

convert 64-bit inst addresses to 32-bit inst equivalents

-cache:icompress false

memory access latency (<first_chunk> <inter_chunk>)

-mem:lat 8 2

memory access bus width (in bytes)

-mem:width 4

instruction TLB config, i.e., {<config>|none}

-tlb:itlb itlb:32:4096:4:f

data TLB config, i.e., {<config>|none}

-tlb:dtlb dtlb:32:4096:4:f

inst/data TLB miss latency (in cycles)

-tlb:lat 30

35

Appendix B
Automation scripts

B.1 benchmark.sh
#!/bin/sh

if [$# -lt 1]; then

echo 1>&2 Usage: $0 \[all\|adpcm\|epic\|g721\|gsm\|jpeg\|mpeg2\|pegwit\|pgp\|rasta\]

exit 1

fi

BENCH_HOME=/home/guthomas/simple/applications/mediabench

CYCLE_SCRIPT=/home/guthomas/src/cycle_by_function.pl

EXTENSION=‘date ’+%d%m%y_%H%M’‘

PROC_PARAM=’-nice 19 -pcstat sim_num_insn’

INSN_SCRIPT=/home/guthomas/src/insn_by_function.pl

export BENCH_HOME

export CYCLE_SCRIPT

export EXTENSION

export PROC_PARAM

export INSN_SCRIPT

if [$1 = ’all’]; then

./mpeg2_benchmark.sh &

./adpcm_benchmark.sh &

./epic_benchmark.sh

./g721_benchmark.sh &

./gsm_benchmark.sh

./jpeg_benchmark.sh &

./pegwit_benchmark.sh

./rasta_benchmark.sh &

./pgp_benchmark.sh

exit 0;

else

./$1_benchmark.sh

exit 0;

fi

36

B.2 An example for a specific benchmark:

adpcm benchmark.sh
#!/bin/sh

echo adpcm Benchmark

BENCH_PATH=$BENCH_HOME/adpcm/simple

cd $BENCH_PATH/results

BENCH_NAME=rawcaudio # the name of the executable file

sim-profile -iclass -iprof -redir:sim $BENCH_NAME.simple.profile.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME < $BENCH_PATH/data/clinton.pcm \

> ../data/out.adpcm.$EXTENSION

sim-outorder $PROC_PARAM -pcstat sim_cycle \

-redir:sim $BENCH_NAME.simple.cycle.$EXTENSION $BENCH_PATH/bin/$BENCH_NAME \

< $BENCH_PATH/data/clinton.pcm > $BENCH_PATH/results/out.adpcm.$EXTENSION

$CYCLE_SCRIPT $BENCH_NAME.simple.cycle.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME.dis \

> $BENCH_NAME.simple.cycle.function.$EXTENSION

$INSN_SCRIPT $BENCH_NAME.simple.profile.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME.dis \

> $BENCH_NAME.simple.profile.function.$EXTENSION &

BENCH_NAME=rawdaudio # the name of the executable file

sim-profile -iclass -iprof -redir:sim $BENCH_NAME.simple.profile.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME < $BENCH_PATH/data/clinton.adpcm \

> $BENCH_PATH/data/out.pcm.$EXTENSION

sim-outorder $PROC_PARAM -pcstat sim_cycle \

-redir:sim $BENCH_NAME.simple.cycle.$EXTENSION $BENCH_PATH/bin/$BENCH_NAME \

< $BENCH_PATH/data/clinton.adpcm > $BENCH_PATH/results/out.pcm.$EXTENSION

$CYCLE_SCRIPT $BENCH_NAME.simple.cycle.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME.dis \

> $BENCH_NAME.simple.cycle.function.$EXTENSION

$INSN_SCRIPT $BENCH_NAME.simple.profile.$EXTENSION \

$BENCH_PATH/bin/$BENCH_NAME.dis \

> $BENCH_NAME.simple.profile.function.$EXTENSION &

37

Appendix C
Postprocessing scripts

C.1 cycle by function.pl
#!/tik1opt1/bin/perl

This source file is distributed "as is" in the hope that it will be

useful. It is distributed with no warranty, and no author or

distributor accepts any responsibility for the consequences of its

use.

#

Everyone is granted permission to copy, modify and redistribute

this source file under the following conditions:

#

This tool set is distributed for non-commercial use only.

Please contact the maintainer for restrictions applying to

commercial use of these tools.

#

Permission is granted to anyone to make or distribute copies

of this source code, either as received or modified, in any

medium, provided that all copyright notices, permission and

nonwarranty notices are preserved, and that the distributor

grants the recipient permission for further redistribution as

permitted by this document.

#

Permission is granted to distribute this file in compiled

or executable form under the same conditions that apply for

source code, provided that either:

#

A. it is accompanied by the corresponding machine-readable

source code,

B. it is accompanied by a written offer, with no time limit,

to give anyone a machine-readable copy of the corresponding

source code in return for reimbursement of the cost of

distribution. This written offer must permit verbatim

duplication by anyone, or

C. it is distributed by someone who received only the

executable form, and is accompanied by a copy of the

written offer of source code that they received concurrently.

#

In other words, you are welcome to use, share and improve this

source file. You are forbidden to forbid anyone else to use, share

and improve what you give them.

#

parse commands

#

38

if (@ARGV != 2)

{

print STDERR

"Usage: cycle_by_function.pl <simulator_output> <disassembly_file>\n".

"\n".

" where <disassembly_file> is a disassembly file, generated with\n".

" the command \"objdump -d <binary>\", <simulator_output> is the\n".

" sim-outorder output containing a text-based profile for pcstat sim_cycle.\n".

"\n".

" Example usage:\n".

"\n".

" objdump -d test-math >&! test-math.dis\n".

" sim-outorder -pcstat sim_cycle test-math >&! test-math.out\n".

" cycle_by_function.pl test-math.out test-math.dis\n".

"\n";

exit -1;

}

$output_filename = shift @ARGV;

open(SIM_OUTPUT, $output_filename) || die "$output_filename could not be opened\n";

$dis_filename = shift @ARGV;

open(DIS, $dis_filename) || die "$dis_filename could not be opened\n";

sub add_cycles_to_function {

$ins_address = shift;

$count = shift;

while (<DIS>) {

if (/^00$ins_address\s<([^\+>]+).*>/) {

$func_count{$1} += $count;

$global_counter += $count;

return;

}

}

seek(DIS,0,0)

}

while (<SIM_OUTPUT>) {

if (/sim_cycle_by_pc.start_dist/) {

last;

}

}

while (<SIM_OUTPUT>) {

if (/^0x([0-9a-fA-F]{6})([0-9a-fA-F]+)/) {

add_cycles_to_function($1,hex($2));

} else {

if (/sim_cycle_by_pc.end_dist/) {

last;

}

}

}

print "Total of cycles: $global_counter\n\n";

for (sort {$func_count{$b} <=> $func_count{$a}} keys %func_count) {

print "$_ : $func_count{$_} cycles ",100*$func_count{$_}/$global_counter,"\n";

}

39

C.2 insn by function.pl
#!/tik1opt1/bin/perl

This source file is distributed "as is" in the hope that it will be

useful. It is distributed with no warranty, and no author or

distributor accepts any responsibility for the consequences of its

use.

#

Everyone is granted permission to copy, modify and redistribute

this source file under the following conditions:

#

This tool set is distributed for non-commercial use only.

Please contact the maintainer for restrictions applying to

commercial use of these tools.

#

Permission is granted to anyone to make or distribute copies

of this source code, either as received or modified, in any

medium, provided that all copyright notices, permission and

nonwarranty notices are preserved, and that the distributor

grants the recipient permission for further redistribution as

permitted by this document.

#

Permission is granted to distribute this file in compiled

or executable form under the same conditions that apply for

source code, provided that either:

#

A. it is accompanied by the corresponding machine-readable

source code,

B. it is accompanied by a written offer, with no time limit,

to give anyone a machine-readable copy of the corresponding

source code in return for reimbursement of the cost of

distribution. This written offer must permit verbatim

duplication by anyone, or

C. it is distributed by someone who received only the

executable form, and is accompanied by a copy of the

written offer of source code that they received concurrently.

#

In other words, you are welcome to use, share and improve this

source file. You are forbidden to forbid anyone else to use, share

and improve what you give them.

#

parse commands

#

if (@ARGV != 2)

{

print STDERR

"Usage: insn_by_function.pl <simulator_output> <disassembly_file>\n".

"\n".

" where <disassembly_file> is a disassembly file, generated with\n".

" the command \"objdump -d <binary>\", <simulator_output> is the\n".

" sim-outorder output containing a text-based profile for pcstat sim_num_insn.\n".

"\n".

" Example usage:\n".

"\n".

" objdump -d test-math >&! test-math.dis\n".

" sim-outorder -pcstat sim_num_insn test-math >&! test-math.out\n".

" insn_by_function.pl test-math.out test-math.dis\n".

"\n";

exit -1;

}

40

$output_filename = shift @ARGV;

open(SIM_OUTPUT, $output_filename) || die "$output_filename could not be opened\n";

$dis_filename = shift @ARGV;

open(DIS, $dis_filename) || die "$dis_filename could not be opened\n";

sub add_cycles_to_function {

$ins_address = shift;

$count = shift;

while (<DIS>) {

if (/^00$ins_address\s<([^\+>]+).*>/) {

$func_count{$1} += $count;

$global_counter += $count;

return;

}

}

seek(DIS,0,0)

}

while (<SIM_OUTPUT>) {

if (/sim_num_insn_by_pc.start_dist/) {

last;

}

}

while (<SIM_OUTPUT>) {

if (/^0x([0-9a-fA-F]{6})([0-9a-fA-F]+)/) {

add_cycles_to_function($1,hex($2));

} else {

if (/sim_num_insn_by_pc.end_dist/) {

last;

}

}

}

print "Total of instructions: $global_counter\n\n";

for (sort {$func_count{$b} <=> $func_count{$a}} keys %func_count) {

print "$_ : $func_count{$_} instructions ",100*$func_count{$_}/$global_counter,"\n";

}

41

Appendix D
Extract form loader.c

Here is an extract (lines 476 to 555) from the file loader.c from the SimpleScalar
source code. This code is responsible for loading the executable in the SimpleScalar
memory.

476 switch (shdr.s_flags)

477 {

478 case ECOFF_STYP_TEXT:

479 ld_text_size = ((shdr.s_vaddr + shdr.s_size) - MD_TEXT_BASE)

480 + TEXT_TAIL_PADDING;

481

482 p = calloc(shdr.s_size, sizeof(char));

483 if (!p)

484 fatal("out of virtual memory");

485

486 if (fseek(fobj, shdr.s_scnptr, 0) == -1)

487 fatal("could not read ‘.text’ from executable", i);

488 if (fread(p, shdr.s_size, 1, fobj) < 1)

489 fatal("could not read text section from executable");

490

491 /* copy program section into simulator target memory */

492 mem_bcopy(mem_access, mem, Write, shdr.s_vaddr, p, shdr.s_size);

493

494 /* create tail padding and copy into simulator target memory */

495 mem_bzero(mem_access, mem,

496 shdr.s_vaddr + shdr.s_size, TEXT_TAIL_PADDING);

497

498 /* release the section buffer */

499 free(p);

500

501 #if 0

502 Text_seek = shdr.s_scnptr;

503 Text_start = shdr.s_vaddr;

504 Text_size = shdr.s_size / 4;

505 /* there is a null routine after the supposed end of text */

506 Text_size += 10;

507 Text_end = Text_start + Text_size * 4;

508 /* create_text_reloc(shdr.s_relptr, shdr.s_nreloc); */

509 #endif

510 break;

511

512 case ECOFF_STYP_RDATA:

513 /* The .rdata section is sometimes placed before the text

514 * section instead of being contiguous with the .data section.

515 */

42

516 #if 0

517 Rdata_start = shdr.s_vaddr;

518 Rdata_size = shdr.s_size;

519 Rdata_seek = shdr.s_scnptr;

520 #endif

521 /* fall through */

522 case ECOFF_STYP_DATA:

523 #if 0

524 Data_seek = shdr.s_scnptr;

525 #endif

526 /* fall through */

527 case ECOFF_STYP_SDATA:

528 #if 0

529 Sdata_seek = shdr.s_scnptr;

530 #endif

531

532 p = calloc(shdr.s_size, sizeof(char));

533 if (!p)

534 fatal("out of virtual memory");

535

536 if (fseek(fobj, shdr.s_scnptr, 0) == -1)

537 fatal("could not read ‘.text’ from executable", i);

538 if (fread(p, shdr.s_size, 1, fobj) < 1)

539 fatal("could not read text section from executable");

540

541 /* copy program section it into simulator target memory */

542 mem_bcopy(mem_access, mem, Write, shdr.s_vaddr, p, shdr.s_size);

543

544 /* release the section buffer */

545 free(p);

546

547 break;

548

549 case ECOFF_STYP_BSS:

550 break;

551

552 case ECOFF_STYP_SBSS:

553 break;

554 }

555 }

43

	The tools used
	SimpleScalar
	The simulators
	The other tools provided with SimpleScalar

	MediaBench

	Simulation methodology
	Compilation of MediaBench
	Changes to SimpleScalar
	The processor architectures used
	Automation and post-processing scripts
	Automation scripts
	Post-processing scripts

	Results
	Instruction class mix
	Branch prediction hit rate
	Instruction cache hit rate
	Data cache hit rate
	Memory footprint
	Function breakdown

	Processor configuration file for SimpleScalar
	Automation scripts
	benchmark.sh
	An example for a specific benchmark: adpcm_benchmark.sh

	Postprocessing scripts
	cycle_by_function.pl
	insn_by_function.pl

	Extract form loader.c

